Estimating extreme bivariate quantile regions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Extreme Statistics , Ii

• We review the current state of statistical modeling of asymptotically independent data. Our discussion includes necessary and sufficient conditions for asymptotic independence, results on the asymptotic independence of statistics of interest, estimation and inference issues, joint tail modeling, and conditional approaches. For each of these topics we give an account of existing approaches and...

متن کامل

Estimating Quantile Sensitivities

Quantiles of a random performance serve as important alternatives to the usual expected value. They are used in the financial industry as measures of risk and in the service industry as measures of service quality. To manage the quantile of a performance, we need to know how changes in the input parameters affect the output quantiles, which are called quantile sensitivities. In this paper, we s...

متن کامل

Estimating Bivariate Tails

In this paper we consider the general problem of estimating the tail of a bivariate distribution. An extension of the threshold method for extreme values is developed, using a two-dimensional version of the Pickands-Balkema-de Hann Theorem. We construct a two-dimensional tail estimator and we provide its asymptotic properties. The dependence structure between the marginals is described by a cop...

متن کامل

Estimating equivalence with quantile regression.

Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter es...

متن کامل

Central Regions for Bivariate Distributions

For a one-dimensional probability distribution, the classical concept of central region as a real interquantile interval arises in all applied sciences. We can find applications, for instance, with dispersion, skewness and detection of outliers. All authors agree with the main problem in a multivariate generalization: there does not exist a natural ordering in n-dimensions, n > 1. Because of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Extremes

سال: 2012

ISSN: 1386-1999,1572-915X

DOI: 10.1007/s10687-012-0156-z